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Abstract

The problem of the displacement of oil by water in a randomly hetrogeneous medium with specified statistical characteristics is
considered. Using an improved perturbation theory within the framework of the Buckley – Leverret two-phase model, a statistical
solution is constructed which enables the average shape of the displacement front to be obtained, and also the variance of the
saturation and the longitudinal velocities on the displacement front, together with a variogram of the fluctuations of the front shape.
© 2007 Elsevier Ltd. All rights reserved.

The mathematical description of the displacement of oil by water1 is based on the theory of two-phase seepage of
immiscible liquids in a porous medium. When considering a randomly heterogeneous medium, when the conductivity
(and also the porosity) is a certain random function of the coordinates, the water saturation, the seepage rate and other
characteristics of the displacement are also random functions of the coordinates. It is of interest to find their average
values, the variances and statistical moments of different orders, which are essential, for example, for estimating the
probability of water breaking through into the oilwell.

When using one of the most widely employed approaches to solving this problem, namely, the Monte Carlo method,
a deterministic problem for the specified form of the conductivity field is first solved numerically, and then averaging
is carried out over the samples using the statistical properties of the conductivity field, assumed to be given. To obtain
sufficient accuracy when obtaining these statistical characteristics, detailed numerical calculations are necessary for
each sample of the conductivity field and the use of a large number of samples for further averaging, which leads to
considerable computer costs and limits the possibilities of simulation.

An analytical approach to the problem consists of finding statistical solutions of stochastic differential equations
and reduces to obtaining a system of equations for the statistical moments and their subsequent solution. The problem
then arises of terminating the infinite chain of equations for the statistical moments using some closure hypothesis.

As it applies to single-phase flows, the closure procedure is carried out by introducing effective characteristics of
the medium, which enable the behaviour of the system to be described over a large-scale medium taking into account
the average effect of very small-scale processes. In the majority of cases, the effective conductivity is calculated using
the lowest approximation of perturbation theory; it can be improved by summing a certain infinite subsequence of
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a perturbation-theory series (“the improved perturbation theory”2–4) or using the renormalization-group method,5–7

known in the theory of random media as “upscaling”.
As it applies to two-phase flows, the pattern is complicated by the occurrence on the displacement front of inhomo-

geneous finger-shaped structures, related to Saffman - Taylor instability.8 A mathematical analysis of the problem is
difficult due to the fact that the conductivity of the medium depends on the water saturation, and this leads to a non-linear
relation between the water saturation and the seepage rate (called the “viscous coupling”).9 However, in the majority of
paper on two-phase seepage flows the simplified problem of the evolution of water saturation in a given field of random
velocities, the statistical characteristics of which were assumed to be known, was solved, or the random-velocity field
was determined from the solution of the problem of single-phase flow in a randomly heterogeneous medium.10–12 A
number of authors13,14 have drawn attention to the importance of taking the viscous coupling into account. Viscous
coupling was considered in the lowest approximation of perturbation theory in Ref.15, and was also considered within
the framework of the improved perturbation theory in Ref.16. In the linear approximation, an equation was obtained in
Ref.16 for the seepage rate, the solution of which enabled the dispersion of the longitudinal shifts of the displacement
front and the average shape of the front to be determined.

Using the formalism developed earlier in Ref.16, below we calculate the variance of the longitudinal velocities and
the variance of the water saturation on the displacement front, and also variograms of the longitudinal displacements
of the front surface.

1. Formulation of the problem

The Buckley – Leverett system of equations,1,17 describing the process of displacement of oil by water, is the basis
of the mathematical model of the process of two-phase seepage, neglecting gravitational and capillary phenomena.
This system consists of the water-saturation balance, the law of conservation of mass (volume) of both phases and the
generalized Darcy law for a two-phase system

(1.1)

Here � is the porosity, S is the water saturation (the fraction of the porous space filled with water), u = u1 + u2 is the total
seepage rate of both phases (water and oil), F(S) is the Buckley – Leverett flow distribution function, which depends
only on the water saturation (the form of this function is determined by the ratio of the mobilities of both phases1), p
is the pressure and � is the generalized conductivity of the two-phase system, which depends on the mobilities and the
relative permeabilties of each of the phases.17

It is assumed that the generalized conductivity � depends on the saturation S, and in the case of a randomly
heterogeneous medium is also a random function of the coordinates. It is usually assumed that

(1.2)

where �(r) is a random function of the coordinates with specified statistical properties. Henceforth we will assume that
� = const, which corresponds to replacing the porosity function by its average value and does not essentially reduce
the generality of the analysis.

It should be noted that, in view of the dependence of the conductivity � on the saturation, according to formula
(1.2), the seepage rate u depends on S, as a result of which Eq. (1.1) are strongly related, and a consideration of this
relation (“viscous coupling”) is extremely important.

In a homogeneous medium the solution of the problem of the motion of the displacement front is constructed by
the method of characteristics, where it turns out that the solution for water saturation must be sought in the class of
generalized solutions containing discontinuities on the displacement front.1 Henceforth we will confine ourselves to
investigating the behaviour of the discontinuity surface (the shape of the displacement front) in a randomly inhomo-
geneous medium on the assumption that on both sides of the discontinuity surface the values of the water saturation
are specified constants S1 and S2. The problem will be considered in a space of arbitrary dimensions d, but in the one-
dimensional case the solution is trivial, and we will consider the two-dimensional problem (d = 2) and three-dimensional
problem (d = 3) as special cases. We will introduce the following notation below. The set of spatial coordinates is a
d-dimensional vector r with components xi (the Latin subscripts take values i = 1, . . ., d), the x1 axis is directed along the
average direction of the front propagation, and the components of the (d − 1)-dimensional vector y, orthogonal to the
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x1 axis, will be denoted by x�, where the Greek subscripts take values (� = 2, . . ., d). In this notation, the gradient vector
has components ∂i = {∂1, ∂�}, the wave vector Q = {q1, q}, which arises when carrying out Fourier transformations,
has components q1 and q�.

We will write the equation of the interface in the form

(1.3)

The region occupied by the first liquid (water) corresponds to the value � < 0, while � > 0 corresponds to the region
occupied by the second liquid (oil); the front and rear sides of the discontinuity surface correspond to � = + 0 and
� = −0.

From the first equation of (1.1) at the interface we can obtain an equation for the function h(y, t), defining the shape
of this surface16

(1.4)

where u0 is the mean seepage rate directed along the x1 axis.
In the linear approximation, the equation for the function �h = h − c0t can be written in the form

(1.5)

where L is a certain linear integro-differential operator;16 it is constructed within the framework of the “improved per-
turbation theory”, when the value of the fluctuations of the logarithm of the conductivity ln[�(r)/�0] plays the role of the
parameter of the expansion in series of perturbation theory, rather-than the conductivity fluctuations ��(r)/〈�(c)〉.7,18,19

The function �h describes the perturbations of the plane surface of the displacement front, while f is a random function
which depends on �(r).

In Fourier-transform space the solution of Eq. (1.5) is represented in the form16

(1.6)

(1.7)

In the expression for �(r) the constant �0 is chosen in such a way that 〈�(r)〉 = 0 (here and henceforth the angle
brackets denote the average over the ensemble of samples of the conductivity field); in this case, �0 is the geometric
mean of the random function �(r) at the point r (by virtue of the statistical homogeneity of the conductivity field this
quantity is independent of r).

We can calculate the dispersion of the shift in the displacement front from the formulae16

(1.8)

(1.9)

Here D(r) = 〈�(r)�(0)〉 is the paired correlation function of the log-conductivity. The arbitrary parameter r0 is related
to the non-uniqueness of the solution of the equation for Green’s function of the Laplace operator. This problem was
discussed in detail in Ref.16, formulae for I(2, A) and I(3, A) were derived, it was shown that the choice of the form of
the correlation function D(r) has no appreciable effect on the result for B0, and it was also pointed out that the case d = 2
is a singular case in view of the logarithmic increase in Green’s function of the two-dimensional Laplace equation.
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2. The variance of the longitudinal velocities on the displacement front

According to solution (1.6), the Fourier transform of the longitudinal velocities on the displacement front has the
form

(2.1)

Hence we can obtain the variance of the velocities on the front surface

(2.2)

Using the formula

(2.3)

and the property M(−q1, −q) = M∗(q1, q), which follows from the first equation of (1.7), we obtain

(2.4)

where D(Q) is a specified function, which, in an isotropic medium, depends on q2
1 + q2 = Q2, which enables us to

represent it in the form of a Laplace integral

(2.5)

The function 	(m) defines the form of the correlation function of the log-conductivity D(r).
Using the notation q1 = Q cos 
, q = Q sin 
 and formulae (1.7), (2.3) and (2.5), we obtain

(2.6)

(2.7)

Here B(a, b) is Euler’s beta-function and �d is the area of the surface of the d-dimensional sphere of unit radius. The
integral over Q is expressed in terms of the gamma-function, while the integral I(d, A), defined by relation (1.9), in
general is expressed in terms of hypergeometric functions, but in the special cases when d = 2, 3 is expressed in terms
of elementary functions.16

As was done previously (see the Appendix in Ref.16), it can be shown that

(2.8)

where D0 is the variance of the log-conductivity of the medium.
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Using relations (2.6) and (2.8) after the calculations leads to the following expression for the variance of the velocities

(2.9)

3. Variance of the water saturation in the region of the displacement front

Assuming that the water saturation distribution near the displacement front has the form of a discontinuous function,
which experiences a jump at the displacement front, the expression for S(r, t) can be written in the form of the generalized
function

(3.1)

To calculate the average distribution of the water saturation we must average expression (3.1) over the fluctuations
in the shape of the interface �h, i.e. calculate the value of 〈sign[x1 − c0t − �h(y, t)]〉. To do this it is convenient first
of all to obtain its derivative with respect to x1. Using the formula ∂xsignx = 2�(x) and representing the �-function in
the form of a Fourier integral, we obtain

(3.2)

(3.3)

where Ψ [g(p, z, �)] is the characteristic functional of the random field �h(y, t).
The form of the characteristic functional for a normal distribution of the random field has the form

(3.4)

which, taking into account the form of the function g(p, z, �), gives

(3.5)

where B0 is the variance of the longitudinal shifts of the front.
After integrating over p and then over x1, we obtain

(3.6)

which, after averaging (3.1) and taking (3.6) into account, leads to a formula for the mean distribution of the water
saturation.16

Using representation (3.1) and the obvious relation sign2(x) = 1, we obtain for the mean square of the water saturation

(3.7)

which leads to the required formula for the variance of the water saturation
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4. Variogram of the longitudinal shifts of the displacement front

One of the characteristics of the random field f(r, t) widely used in geostatics is the variogram, which is defined by
the relation

and for a stationary and statistically homogeneous field, when

the variogram is simply related to the paired correlation function

where B0 = B(0, 0) is the variance of the random field f(r, t).
We will consider the variogram for �h – perturbations of the shape of the plane displacement front x1 − c0t = 0

(4.1)

In the two-dimensional case, the integral expressions for B0 and B(y) contain logarithmic divergences, which lead
to non-uniqueness (the dependence of these quantities on the normalization point r0), which are discussed in detail in
Ref.16, but this problem does not arise for variograms.

We will calculate the paired correlation function

Using formulae (1.7) and (2.5) for the Fourier transforms �h(y, �) and D(q1, q), we obtain

(4.2)

To carry out the integrations over q1 and q we use the formulae

After carrying out the integrations over the components of the vector q, substituting  = 1/(1 + �) and integrating by
parts, we obtain the function B(y), and from formula (4.1) for the variogram we obtain

(4.3)
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Fig. 1.

In the case when the paired correlation function of the log-conductivity has the form D(r) = D0 exp(−r2/a2), the
function 	(m) is given by the relation 	(m) = D0(4�m)d/2 �(m − a2/4) and formula (4.3) simplifies to

(4.4)

Note that, according to the general principle of the weakening of correlations at considerable distances, we have
the limit relations B(y) → 0 and �(y) → 2B0 when y → ∞.

The results of a calculation of the variograms in the three-dimensional problem for three different values of the
parameter A are shown by the dashed curves in the Fig. 1.

The case d = 2 is a special case in view of the characteristics of the behaviour of Green’s function for Laplace
equation (the logarithmic increase at long distances). Corresponding to this for large y the variogram also increases
logarithmically. To estimate the asymptotic form in this case, we bear in mind that in the two-dimensional problem the
neighbourhood of the point  = 0 makes the main contribution to the integral over . Hence, for large y2/a2 the inverse
value of the radical in the expression for �() can be taken in the form
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As a result, after reduction we obtain

(4.5)

i.e. a function that increases logarithmically for large y/a. When obtaining formula (4.5) we took into account the
relation

The results of the calculation of the variograms using formula (4.4) for d = 2 are shown in Fig. 1 by the continuous
curves. It can be seen that in this case, for long distances, the variograms increase logarithmically in agreement with
the asymptotic formula (4.5).
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